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ATRFOIL CHARACTERISTICS IN A NONEQUILIBRIUM AMBIENT
STREAM BASED ON LINEARIZED THEORY
By James J. Der

Ames Research Center
Moffett Field, Calif.

SUMMARY

The aerodynamic characteristics of a 1lifting body in a noneguilibrium
stream are studied for a simple case, namely, the case of a nonequilibrium
oncoming stream past a thin airfoll at a small angle of attack. Analytical
solutions are obtained by the use of nonequilibrium linearized theory.
Results show that when the relaxation length on the windward side of the air-
foil is not appreciably different from that on the leeward side, a nonequi-
librium ambient condition will normally induce a higher pressure and lower
drag, but will not affect the 1lift, pitching moment, and the center of pres-
sure. The local nonequilibrium condition behind the leading-edge shock, on
the other hand, will affect all of the aerodynamic characteristics in general.
When the relaxation length on the windward side is significantly different
from that on the leeward side, on the other hand, the nonequilibrium ambient
condition will also affect the 1lift, pitching moment, and the center of pres-
sure. In general, the higher suction on the leeward side gives higher 1ift
and larger pitching moment because the condition on the leeward side is
closer to frozen.

INTRODUCTION

The present study is motivated by the desire to learn something about
the effects of a nonequilibrium condition in the ambient stream on the aero-
dynamic characteristics of a body. For an arbitrary body, such a study would
normally require detailed numerical calculation of the flow around the body,
with the free-stream condition out of equilibrium. Calculations of this type
are, 1in general, tedious.

A case for which we can obtain a simple analytical solution is the non-
equilibrium flow past a thin airfoil at a small angle of attack. From the
results of this case we can discover some indication of what the ambient non-
equilibrium would do to the characteristics of a lifting body, with or without
the local flow condition in equilibrium.

In order to study problems whose solutions can be obtained analytically,
we shall use a small-disturbance theory for nonequilibrium flow. This theory
and its limitations have been described by Vincenti in reference 1, where he
introduced a model for flow with nonequilibrium ambient conditions. The use



of a small-disturbance theory limits the quantitative accuracy of the results.
The results are not, therefore, intended to be accurate solutions to practical
problems, but rather as qualitative information about the aerodynamic charac-
teristics of airfoils in a nonequilibrium ambient stream.

In the following sections, the physical aspects of the problem are first
described. A solution to the governing equation is then obtained. The result
is applied to biconvex airfoils at angles of attack near zero where the relax-
ation time of the lower surface is close to that of the upper surface.
Finally, the general case of an airfoil with different values of relaxation
times on the upper and lower surfaces is discussed, and explicit expressions
for the aerodynamic coefficients are given for the case where the condition
on the upper surface is frozen (with the flow on the lower surface in nonequi-
librium condition in general).

PRINCIPAL SYMBOLS

Be”
a —
2
Br
aa equilibrium sonic speed
ar frozen sonic speed
c(&) a function defined by e~uation (&)
C
c.p. center of pressure, ——
‘L
dra,
Cp drag coefficient, > g
(1/2)p Uy chord length
Cy, 1ift coefficient, ;Llft
(1/2)0,U,~ chord length
Cm moment cceffilcient, pltczlng moment =
(1/2)p,U,~ chord length
. P~ Py
C pressure coefficient, —
P (1/2)p. U 2
/200U,
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(&)

E>n

enthalpy

modified Bessel function of the first kind, zero order

Sh Sh oh dg* i
Tolo 'azlo {‘aﬁw * a)w "a?lj

chord length
X

pressure
nonequilibrium variable (e.g., degree of dissociation)
Iaplace transform variable

velocity in the =x and y directions, respectively
free-stream velocity

Cartesian coordinates parallel and normal to the free-stream direc-
tion, respectively

angle of attack (with respect of the free-stream direction)

angle of the boundary at n = O with respect to the free-streanm
direction

x - B
skew coordinates; € = .

a function of & = +6y = -06;
density

ratio of the relaxation lengths of the lower and the upper surfaces



i/2
. a + s
l+ s

relaxation time behind the leading-edge shock

To

®© normalized perturbation velocity potential, defined by the
relations Ky = E;%ggé and K@y = %i, or Q¢ = E;%E?é and
Pn - Pe =BfL[%o

o laplace transform of @,.gu)exp(—sé)m(é,n)dg

Superscripts and Subscripts

() equilibrium value

M Iaplace transformed quantity

()' derivative of ( ) with respect to its argument

( )u upper surface of the airfoil

( )Z lower surface of the airfoil

( )OO free-stream value

( )nf due to nonequilibrium free stream

( )X’ ( )Y’} partial derivatives with respect to the subscripts

(Vg (5
PHYSICAL DESCRIPTION

We shall consider an airfoil in a supersonic stream (fig. 1). The
ambient stream is uniform but can be in a nonequilibrium condition. This can
be expounded as follows: Let the state of the flowing gas be determined by
the pressure p, density p, and a nonequilibrium variable g (e.g., degree
of dissociation or vibrational energy). The enthalpy h, for example, is a
function of these independent thermodynamic variasbles as h = h(p,p,q). The
state of the gas is said to be in equilibrium if q satisfies the relation
a=g*p, o), otherwise the state of the gas is out of equilibrium. If g
takes a fixed value, that is, g equals a constant, the state of the gas is

L



sald to be in a frozen condition. In y

the problem we are considering, q is

out of equilibrium everywhere including Uniform

in the free stream, where free stream
q»¢45;

Leading-edge shock
Trailing-edge
shock

q, # a*¥(p ,0 ) = q ¥

L ~«a«z&%%&7 —"-....l"
——r———-

Srriis

The ambient flow is taken to be paral-
lel to the x axis. It is assumed
that the flow ahead of the alrfoil is
uniform with respect to both x and y.
Thus, the relaxation time in the free . A . . .
stream, T, is assumed to be large. Figure l--‘Alrf01ls in a nonequilib-
Behind the leading-edge shock, however, rium free streanm.

the relaxation time® of the fluid is

reduced due to compression, and chemical reaction or vibrational relaxation
will take place. Por flow past an airfoil at an angle of attack, the amount
of reduction of the relaxation time across the leading-edge shock on the wind-
ward surface is larger than that on the leeward surface because of higher
compression on the lower side. We can classify the situation into three
cases:

1. When the angle of attack o 1is much smaller than the leading-edge
slope 6,5 of the airfoil, the relaxation time on the upper (leeward) surface,
Ty, 1s approximately the same as that on the lower (windward) surface, Ty.

The deviation from equilibrium is the same on the two surfaces.

2. When o is smaller but of the same order as 65, compressive shocks
still occur at the leading edge on both surfaces. Since T, < Ty, however,
the flow on the lower surface will be closer to equilibriuwm than that on the
upper surface.®

3. When o is greater than 65, a compressive shock occurs at the lead-
ing edge on the lower surface, but the flow on the upper surface is under
expansion, which means T 1is larger than Ty, hence, is very large. Conse-
guently, the flow on the upper surface is in a frozen condition.

We shall treat case 1 (Ty = Ty) in detail, giving both explicit expres-
sions and numerical results. Only analytical results will be presented for
the other cases, which will be discussed qualitatively.

To attack this problem analytically, we shall restrict our study to a
two-dimensional flow field that is perturbed slightly from the uniform

1The relaxatlon tlme is a characterlstlc reaction tlme. It is essen-
tially the time required for a gas to reach an equilibrium state.

2An exceptional case is the flow past a wedge. The degree of nonequilib-
rivum in the free stream may be such that equilibrium on the upper surface is
reached immediately behind the leading-edge shock, whereas it is not reached
on the lower surface. This case is not treated here, however, since we are
interested mostly in airfoils having closed profiles.




nonequilibrium free-stream condition. The relaxation time, however, is
assumed to be reduced by an order of magnitude across the initial shock. Such
an assumption for the relaxation time is hardly consistent with the assumption
of small disturbances. When the disturbances are indeed small the relaxation
time behind the leading-edge shock can be finite only if the free-stream
relaxation time is finite so that nonuniform conditions exist in the free
stream. When the disturbances are so large that the relaxation time is
reduced by an order of magnitude, the assumption of small disturbances is vio-
lated. Nevertheless, it is expected that for either of these two cases the
linear theory should give indications of the flow phenomena on the airfoil
surface, at least qualitatively correct. The nonequilibrium variable can be
any of the common ones, for example, degree of dissociation, but we assume
that only one nonequilibrium mechanism is of importance at a time. This is
the same flow model with which Vincenti (ref. 1) studied the flow over a wedge
in a nonequilibrium oncoming stream.

AN ANALYTTCAL SOLUTION

With the assumptions enumerated in the previous section we can describe
the flow behind the leading-edge shock by a linear equation in terms of a
perturbation velocity potential @. This equation has been derived by
Vincenti (ref. 1) for the upper plane, that is, for positive y. We shall
obtain the pressure distribution on the upper plane, noting that the resulting
expression is valid for the lower plane by simply replacing y by -y. In a
linearized theory, the shock wave coincides with the initial Mach line. In
the nonequilibrium linearized theory, the shock wave coincides with the ini-
tial frozen Mach line. Since y = x/By is the initial frozen Mech line on
the upper plane, all disturbances occur in x > Bgy. It will be convenient
to use, in place of the Cartesian coordinates x and y, the skew coordinates
E = (x - ny)/K and 1 = ny/K. The flow guantity X 1is proportional to the
relaxation length 73U, and is an important characteristic length in a non-
equilibrium flow. To solve the resulting potential equation we shall use the
method of laplace transforms.

The Laplace transformation of the flow equation is given by Vincenti,
who obtained the transformed solution for the upper plane, that is, positive
n, (eq. (54) of ref. 1) as

- *
o(s,n) = LIe(&,n)] = a(s)e(0718N | p(eye(orren Gm(q:’gﬁ ) (1)
f
The quantities A(s) and B(s) are to be determined from the boundary
conditions. The quantity C—m(qbo - g *)/(s®B¢) comes from the nonequilibrium
anbient condition. It vanishes when = q,%.. Since G, and (q - q_*)
are normally positive (ref. 1), the value of G—(qDo - q *)/Be 18 normally
positive. ® ®

The boundary conditions are: (1) the disturbances are bounded, and (2)
the stream line is parallel to the boundary at the airfoil surface, which can
be taken to be at y = O (hence 7 = 0) for the small disturbance theory.



The first boundary condition means that the value of B(s) must be identically
zero; otherwise the disturbances grow without bound as 1 = ©. The second
boundary condition means

on(&,0) - ¢(&,0) = 5(&)/Bs
or
0 (s,0) - s0(s,0) = B(s)/By = LIB(E)]/Bg (2)

where 8(&) is the slope of the boundary at 7 = O with respect to the free
stream. This boundary condition gives the value of A(s). As a result we
obtain the transformed value of @g(é,n) = (u-U,)/u, as

%o = %o 5 1 -s(o- (g - g *)
L[(Pg(é,n)] = SCD(S:T]) = [Gm( 5 %o ) % _ B—:G:l e S(G 1)T] _ G'oo quSquoo
(3)

The inversion of this transformed relation will give the value of
(u - qw)/U&, which also gives the value of the pressure and enthalpy since,
within the first order,

Cp =2(p - p)/o U~ = -2(u - U.)/U,
and

h-h, =-(u-U)U,

[oe)

Similar expressions for other flow quantities can also be obtained.

The inverse transform of the last term in the right-hand side of equa-
tion (3) is simply —Goo(qCo - qaf)/Bf. No explicit inversion for the remaining
terms in the right-hand side is known. Possibly they can be obtained by
numerical means, (e.g., a method proposed by R. Bellman, et al. (ref. 2)).

Our present interest is, however, only the pressure distribution on the
boundary, that is, at mn = 0. For this case the exponential factor is unity.

The inverse transforms of 1/(so) and §/¢ can be obtained from a transform
table (e.g., ref. 3). They are

L‘l[—sla_] c(§)=e>m<-a£l€>10< élg>
el Rl w

where Iy 1s the modified Bessel function of the first kind, zero order, and

-1 [= g
Lt [%J = 8(0)c(&) + fo 8'(t)e(E - t)at (5)
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The pressure distribution on a boundary at 7 = O with slope &(&) is,
therefore, given by the expression

b B a(ode(8) s [ Br(ee(t - )at + 6 (a_ - a1 - e(8)]

f U co 0 0.0}

2
Poolso o

which is guite general for any smooth 5(t).

The above equation is derived for y (hence 1) = O+. Therefore it gives
the pressure on the upper surface. It 1s applicable on the lower surface
(q = 0-) if one replaces vy by -y in the derivation. This would result in
replacing © by - 1in the above equation for the lower surface. Hence we can
express the pressure on the upper surface, Py and lower surface, Py by the
relations

i :
Be —‘pE U—§°° = 8,(0)c(E) + f By (t)e(t - t)at + ¢ (a, - a M1 - c(&)]
00 00 (6&)
Py = B, :
By —iooUwg = -8, (0)c(g) - fo B (t)e(t - £)at + Gylay - a, X)L - c(§)]
(6b)

The first two terms in the right-hand side of equations (6a) and (6b)
give the pressure distribution on the boundary when the ambient stream ahead
of the leading-edge shock is in an equilibrium condition. The last term gives
the effects of nonegquilibrium free-stream conditions on the pressure. Within
the first-order theory, therefore, the effect of nonequilibrium ambient condi-
tion is in the form of a simple additive quantity. The consequences of such
weak coupling to the aerodynamic characteristics of an airfoil will be dis-
cussed in the next section. Because G, and O ~ 4~ are normally positive,
when the ambient stream is not in equilibrium, the pressure on the boundary
is normally higher with the additive pressure proportional to qw(qaj— qm*).

CHARACTERISTICS OF AIRFOILS FOR THE CASE Ky = X

We shall now consider an airfoil at an angle of attack. First, we shall
study thin airfoils in general. Iater, we shall apply the results to a spe-
cific airfoil, namely, the biconvex airfoil. The case for which the relaxa-~
tion times are approximately the same on the upper and lower surfaces will be
treated presently. This is case 1 mentioned in the previous section. The
case of Ky # K; will be treated in the next section.

The slope 6, for the upper surface of an airfoll can be written, for
convenience,

Qu = 9(5) = Qof(g/l)



where 6g 1s the leading-edge slope, f(g/Z) represents the variation along
the chord line, and 1 is the chord length divided by XK. (Recall that ¢
is the streamwise distance from the leading edge divided by K.) At an angle
of attack the slope of the upper surface with respect to the free-stream
direction is &, = 6 - a. The slope of the lower surface with respect to the
free-stream direction is, for a symmetric airfoil, 8; = -(6 + a). By substi-
tution of &y and ®; into equations (6) we obtain the pressure coefficients
for the upper surface, CPu’ and that for the lower surface, CPZ’ as

9%

- RGN [1-c(E)] + [c(é) +% fg f'<%> c(t - t)dt}
O

¥ [9& C(é)] (7)
o]
where the upper sign goes with CPu and the lower with sz.

The various terms in equation (7) can be interpreted as follows: If the
anbient stream is not in equilibrium (e.g., frozen in a certain degree of
dissociation), then after the flow passes the leading-edge shock, the sudden
reduction of the relaxation time (due to the compression) induces recombina-
tion, and the degree of dissociation tends toward an equilibrium value at a
speed governed by the magnitude of the relaxation length behind the shock.
This pressure rise induced by the recombination is given by the term inside
the first bracket. It can also be, of course, due to other types of relax-
ation, for example, molecular vibration. The term inside the second bracket
gives the pressure distribution on the surface due to the contour of the air-
foil. This portion of the pressure distribution corresponds to that of the
"thickness case” (ref. 4) in classical aerodynamics. Here, of course, in con-
trast to classical flows, the local conditions can be either equilibrium or
nonequilibrium. Finally, the last term gives the pressure distribution due to
the angle of attack, and corresponds to the pressure rise on a flat plate at
an angle of attack in the classical case. With the expressions for Cp, and
CPl we can compute the aerodynamic coefficients by the following relations:

1
1
o, = fo (Cp, - Cp,)at (8)
1
Cn = =3 fo £(Cp, - COp_)at (9)
1
1
Cp = 7 fo (8uCp,, - 81Cp,)dt (10)



while the center of pressure is
c.p. = Cp/Cy, (11)

Using equation (7) for Cp, and Cp, we obtain

B y [t

25 CL = 3 Jo c(g)ae (12)
1

%Cm=%é£ HOLE (13)

_{;7' tc(E)at
2 .{;z c(e)at

byt [ {8 o0 (o HD (- con)

(15)

Q
g
1

where

v(E) = c(e) +:—zL fog f'<:%>c(é - t)dt

Equations (12), (13), and (14) show that, within the first-order accu-
racy, the 1ift, pitching moment, and the center of pressure of an airfoil are
not affected by the nonequilibrium condition in the ambient stream. They are,
however, affected by the nonequilibrium condition behind the leading-edge
shock. The explanation of such rather unexpected phenomena is that the pres-
sure induced by the nonequilibrium ambient condition is the same on the upper
and lower surface, hence, there is no effect on the 1lift and pitching moment
(and, therefore, center of pressure). Such is not the case, however, for the
drag.

The drag coefficient consists of three parts: The first part is the same
as a flat plate at an angle of attack and is given by the expression

Br a . N ¢
5;5 CDflat plate <éé> 1 ‘Z: c(€)at (152)

10



The second part is the drag due the thickness of the airfoil and is
given by the expression

Bf L t £ 1 2 ft
_e? CDthickness = T _/; f<7> !:c(g) t 3 £ £ <7>c(§ - t)dt} g
(15b)

Finally, the effects of the nonequilibrium condition in the ambient stream to
the drag is given by

B G (o - q %) l
e—fz Cppp = o 5{ f f<—§’>[1 - c(&)]at (15c)
o o

The lift-drag ratio can be obtained, of course, by use of equations (12)
and (15). In particular, for the flat plate in an equilibrium free stream,
the 1lift-drag ratio is simply equal to l/m. Thus, within first-order accu-
racy, the lift-drag ratio of a flat plate is not affected by the local non-
equilibrium conditions.

The values of Cp and Cp depend on the shape of the airfoil. To obtain
representative values for them we shall consider a specific airfoil, namely,
the biconvex airfoil, which is given by

~1-22%
f=1-2<

The corresponding Cp and Cp are

Pr
I ¢
26, Fu
¢ (a, - a*) > [E
= — © — [1- c(€)] + |c(E) - = c(& - t)dt | 7 — c(&)
Bf C bo +{: ¢ "/; J %
265 P1 (16)
B L [t =
gj% Cp = Ué\ -{ <§%> c(&) + <; -2 %> v, (8)
G (g - q *)
; °°_q°°90 Wl (10 %) [1 - c(g)]} at (17)
where

1
v (&) =c(&) - % LZ: c(g - t)dt

11



Figure 2 shows

the variation of 1ift, pitching moment, and (for a

biconvex airfoil in an equilibrium ambient stream) components of the drag

coefficients versus 1 for a = 1.5.
with the relaxation
ing sufficient time

essentially frozen.

When the chord length is small compared
length (1 - 0), the flow past the initial shock, not hav-
for relaxation toward the equilibrium condition, is

When the chord length is large compared with the relaxa-

tion length (1 - ®), however, the flow behind the leading edge is mostly in

an equilibrium condition.

Direct computation will also verify that in the

two limits, the coefficients take the following asymptotic values:

10 —

174 CDrhickness 'Gf /90

174 CMBf/a

174 C; B¢ /a ond

2
174 CDdue toa Bf/a
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00l A 1.0 100 jlr
Chord length/A

Figure 2.- Drag, 1ift, and pitching
moment of a biconvex airfoil in
a nonequilibrium flow field for

(M2 - 1)/(Ms% - 1) = 1.5.
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a CDn_f., E(
48, (ao-a@*) G

oL— 1 ! 1 ]
100
Chord length /A

Figure 3.- Drag on a biconvex ailrfoil

due to the noneguilibrium free stream

for (Me® - 1)/(Me% - 1) = 1.5.
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equilibrium:
. b . 2 a
lim Cy = — — 1lim Cp = — —
1o 0 Ja Br' L | NE Pr

lim Cp =

1~

)+ <CI..2 + —9—Qf>
JaPr 3

frozen:

lim Cq, = =
1-0 Be’

]
|=
/;;\
[
+
[m
o)

lim C
l»o P Br

Thus the coefficients in the frozen
limit are larger than the correspond-
ing ones in the equilibrium limit by
the factor of «a. TFor the case of
a = 1.5, which is not unusual in mod-
ern high-temperature facilities, this
means a difference of roughly 20 per-
cent.

Figure 3 presents the change of
Cp (ACDpf) of a biconvex airfoil when
the condition in the ambient stream
is out of equilibrium.

The drag induced by the nonequi-
librium free stream is negative. The
reason is that the pressure induced by
the nonegquilibrium ambient stream
increases monotonically after the ini-
tial Jump at the leading-edge shock;
consequently, a net thrust results.



Note that ACp,f 1s zero when the flow is frozen behind the leading edge
since no reconmbination (for dissociating case) occurs. When the condition
behind the leading edge is equilibrium ACp,r is again zero because the
pressure induced by the nonequilibrium stream is constant in the equilibrium
limit.

We see that, within the first-order perturbation approximation, the
ambient stream nonequilibrium actually has no effect on the 1lift and the
pitching moment. The local stream nonequilibrium, however, does affect the
1lift and moment, as well as the drag coefficients. The drag coefficient, on
the other hand, is affected by the nonequilibrium condition in the free
stream by an amount of

a ( - *) 1
ACp, e = L‘BGO w0~ %o f <1 -2 —%—> [1 - c(&)]at

f L o

which is (1) proportional to G (g, - %), (2) dependent on the shape of the
airfoil, and ( 3) not dependent on the angle of attack.

CASES WHERE Ky # K,

So far we have treated the case where the relaxation length on the upper
surface of the airfoil is nearly the same as that in the lower surface (i.e.,
Ky = K7 = K, which is approximately correct when 6o >> @). In general, due
to the higher compression, the relaxation length is shorter on the lower sur-
face, that is, K; < Ky. If the angle of attack is larger than the leading-
edge slope, Ky > XK, due to expansion. ©Since K  1s assumed to be infinite,
for this case, the condition is frozen on the upper surface.

The case where Ky % Ky 1is more complicated than the case we have
treated. We shall briefly describe such a more general case, however, and
conclude by giving the explicit relations for the aerodynamic coefficients
when 6o < o, that is, Ky — o.

For convenience, let
K, = K and Ky = — =<K
2 U H’
then
=1, and 1y = ul
Note that O < pu < 1.

The relation in equation (6b) is still applicable directly for the lower
surface since £, = & = x/K (for 7m = 0). For the upper surface the variable
£ must be replaced by &, = nE and 1 Dby Iy = pl. Thus we have

13




E) - £
LU NS WA [ et wdels - 9las + 6, (a, - a0 - o(8)]
SIRUM o
(18a.)
p, (&) - p nE
By ————5— = &y(0)c(nt) + U/\ 8y’ (tle(ng - tdat + G (a - a )1 - c(ne)]
p U o)
@ (18b)
where
_ _ HE
du(nE) = 0(uE) - a = 9, u1> e (19a)
-8,(6) = 6(&) + a = %f<%>+a (19p)

The expressions for Cp are, therefore,

B G (a_ - a*)
55% Cp,(E) = o [1 - c(re)] + c(unt)
1 ME ot
i JC r <;37> c(ug - t)at - é% c(pt) (20a)
Br Goo(qoo - qoo*) 1 +
ﬁg sz<§) = 90 [1- C(é ] + C(E _Z_\/; <_Z.> g -t)d—t +_o c(&,
(20b)

By direct substitution of Cp from equations (20) into equations (8)
through (11), one can cbtain the aerodynamic characteristics of an airfoil
when Ky # K;. An interesting case is where p = 0. For this case the flow
on the upper surface 1s in a frozen condition. The value of Cp, 1s given
by, therefore,

Br 3
Opy(8) = - & + 2 + 2la
(Note that f < 1.) While CPZ remains the same as before, that is,

a - g ¥ €
Bf = m(%” %o ) [1-c(E)] + c(t) + % kZ: f'(:%:)c(ﬁ - t)dt + éi c(&)

C
265 1 9

(21p)

1k



The corresponding aerodynamic coefficients are

%i o _% fz {Gm(qoo; a*) [1 - ()] +%—° [ﬂr(ﬁ) - f<—%—>} + [c(&) + 1]} e
° (22a)
.i_f Cn =2 fol : {Gm(qmog % - e(e)) +%° [w(e) - f<—§'—>}+[c(e) + lil} ag
(22b)
S% CD=%f CL+2%OL° %izf@){dé) -1 +%° [w(e) +f<—%>J
+ G°°(q°°; %" [1 - c(g)]} at (22¢)
where

v(€) = c(€) +% /;g f<§> c(& -~ t)at (23)

It is apparent, from equations (22), that in the present case, because
of the difference between the relaxation lengths of the upper and lower sur-
faces <Ku # KZ), the aerodynamic coefficients are further affected. Consider
C1, of equation (222) as an example: Equation (22a) can be written as a sum
of three terms, that is,

G _ *) 7,
EicL=§ % % f [1 - c(&)]at

[¢2

+2%0% foz [ur(g) - f<—§>} at
v & foz [c() + 1]ag (k)

Because the relaxation length is shorter on the lower surface (Kz < Ku),
the pressure rise due to recombination (for dissociation equilibrium) is
higher on the lower surface than that on the upper surface; the 1lift corre-
sponding to this is given by the first term.

The local flow condition is also different on the lower and the upper
surfaces. The condition on the lower surface is closer to equilibrium. This
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gives a higher pressure due to the thickness of the airfoil on the upper
surface and a corresponding negative 1lift indicated in the second term.

Finally, the suctlon on the upper surface due to the angle of attack is
higher since the condition on the upper surface is closer to frozen. This
gives an increase of 1lift due to the angle of attack as indicated in the
third term in equation (24).

CONCLUDING REMARKS

We may now make a few conjectures on the characteristics of lifting
bodies in general, based on the observation of the preceding results.

When the relaxation length is relatively constant on the windward and
the leeward sides, the effect of the nonequilibrium anmbient condition on the
1lift and pitching moment is relatively small but will affect the drag and the
pressure distribution. The local noneguilibrium conditions, however, will
affect all of the aerodynamic characteristics. In fact, the aerodynamic coef-
ficients are normally higher for bodies when the local stream is out of
equilibrium.

In the more general case the relaxation length is shorter on the wind-
ward side than that on the leeward side. Thus, the condition on the windward
side is closer to equilibrium, or, in other words, the leeward side is closer
to frozen. In this case all of the aerodynamic coefficients are affected by
both the ambient and the Llocal nonequilibrium conditions. The ambient non-
equilibrium condition will give an increase in 1ift.

Ames Research Center
National Aeronautics and Space Administration
MoTfett Field, Calif., Feb. 19, 1964
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